BACH E IL NASTRO DI MÖBIUS

Il nastro di Möbius è una superficie in R3 scoperta nel 1858 dal matematico tedesco August Ferdinand Möbius. Un esempio è visibile nella seguente figura 

Fig. 1 Nastro di Mobius

In termini matematici il nastro di Möbius può essere descritto dal seguente sistema di equazioni che permette di parametrizzare il modello 

I parametri presenti nelle equazioni sono i seguenti 

-il parametro u permette di muoversi lungo il nastro (cioè lungo la sua superficie)  

-il parametro v permette di passare da un bordo all’altro 

-r è il raggio della circonferenza che rappresenta il cerchio centrale della figura, che può essere detto anche linea di mezzeria 

-x,y e z sono le coordinate di un punto P sulla superficie del nastro di Möbius 

-l indica la larghezza del nastro  

-in particolare il parametro v indica la distanza di un punto P dal cerchio centrale 

-r ed l sono entrambi numeri positivi con r > l 

-fissando alcuni dei parametri (r,u e v) è possibile individuare un punto P sul nastro di Möbius 

-u è compreso tra 0 e 2π 

-v è compreso tra –l e +l 

Il nastro di Möbius è una superficie rigata, cioè in ogni suo punto passa almeno una retta che giace sulla superficie del nastro  

Esempio 

Supponiamo che  

r = 4 (raggio del cerchio centrale) 

l= 1 

v= 1 

Per cui la larghezza del nastro è 2l 

In tal caso è possibile individuare un punto P che è di coordinate

DESCRIZIONE E COSTRUZIONE DEL NASTRO DI MÖBIUS 

La maggior parte delle superfici degli oggetti hanno sempre due facce per cui è possibile passare da una parte all’altra della superficie raggiungendo e superando lo spigolo dell’oggetto. Nel nastro di Mobius, tuttavia, esiste un solo lato ed un solo bordo per cui percorrendo un giro ci si trova dalla parte opposta. Il nastro di Mobius può essere costruito partendo da una striscia di carta in forma rettangolare, unendo i lati corti, dopo aver impresso ad uno di essi una torsione di 180°, come visibile nella seguente figura 

Fig. 2 Descrizione del Nastro di Mobius

RAPPRESENTAZIONE DEL NASTRO DI MÖBIUS NELLA CULTURA E NELL’ARTE 

Alcuni studiosi hanno individuato possibili rappresentazioni del nastro di Möbius in opere artistiche antiche. Per esempio nella parte centrale di un mosaico che rappresenta la dea Tellus circondata da quattro bambini, ai piedi del dio Aion (conservato nella gliptoteca di Monaco) è possibile vedere il dio Aion in piedi dentro quello che possa essere considerato come un modello di nastro di Möbius, come visibile nella seguente figura 

Fig. 3 Una possibile rappresentazione del Nastro di Mobius in un mosaico del III sec.

Effettivamente si ha l’impressione che il nastro che avvolge il dio Aion possa essere oggetto di una leggera torsione che ricorda l’immagine del nastro di Möbius, sebbene non vi sia la certezza che tale figura potesse essere conosciuta all’epoca in cui fu realizzato il mosaico (200-250 d.C. circa). 

In epoca moderna l’incisore e grafico olandese Maurits Cornelis Escher rappresentò il nastro di Möbius in due opere, il nastro di Möbius I (1961) in cui viene rappresentato un binastro di Möbius, in cui vi è una coppia di serpenti che indicano cosa si verifica ad un nastro di Möbius quando viene tagliato lungo una linea chiusa posta a distanza costante dal bordo. Tale situazione non sconnette la superficie, poiché i due serpenti continuano a essere legati tra loro e si mordono la coda, come si vede nella figura seguente 

Fig. 4 Nastro di Mobius I – Escher (1961)

L’altra opera di Escher fu nastro di Möbius II (1963) in cui compare un gruppo di formiche in fila che percorrono la superficie di un nastro di Möbius; in tale figura le formiche camminano una accanto all’altra sulla stessa superficie sebbene sembrino percorrere due lati opposti, come si vede nella successiva figura 

Fig. 5 Nastro di Mobius II – Escher (1963)

Il nastro di Möbius è stato impiegato nell’ambito della cultura letteraria e cinematografica in racconti e pellicole cinematografiche (Una metropolitana chiamata Moebius, Nastro di Moebius) e ha trovato numerose applicazioni pratiche nell’industria e nell’informatica.

IL CANONE INVERSO DI BACH E IL NASTRO DI MÖBIUS 

Nel 1747 Johan Sebastian Bach compose un canone (definito impropriamente inverso) detto cancrizzante (dal latino cancer, cioè a “gambero” con moto inverso) in cui si legge in direzione contraria la linea melodica. Il suo celebre canone è stato accostato ad una rappresentazione musicale del nastro di Möbius, sebbene Bach sia vissuto nel ‘700 e Möbius nell’800. Infatti nel Canone 1 a 2 dell’Offerta musicale di Bach (1747) il manoscritto mostra un solo pentagramma in cui l’inizio e la fine sono collegati. Tale caratteristica è associata al nastro di Möbius, in cui l’esecuzione simultanea dei due percorsi (semplice e retrogrado) genera due voci che simmetricamente determinano una evoluzione musicale reversibile. Questo tipo di costruzione musicale implicherebbe una profonda conoscenza da parte di Bach del rapporto tra la matematica, la geometria e la musica, a dimostrazione del profondo e complesso legame esistente tra tali discipline. Una possibile rappresentazione del Canone inverso di Bach è visibile nel seguente video: Johann Sebastian Bach – Canone 1 a 2


Giuseppe Badalucco

Webgrafia di riferimento

www.youtube.com/watch?v=Y0_DeHSTLHU

Seguici su Facebook

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *